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Abstract: Spatial-explicitly mapping of the hotspots and coldspots is a vital link in the priority 
setting for ecosystem services (ES) conservation. However, little research has identified and 
tested the compactness and efficiency of their ES hotspots and coldspots, which may weaken 
the effectiveness of ecological conservation. In this study, based on the RUSLE model and 
Getis-Ord Gi* statistics, we quantified the variation of annual soil conservation services (SC) 
and identified the statistically significant hotspots and coldspots in Shaanxi Province of China 
from 2000 to 2013. The results indicate that, 1) areas with high SC presented a significantly 
increasing trend as well, while areas with low SC only changed slightly; 2) SC hotspots and 
coldspots showed an obvious spatial differentiation—the hotspots were mainly spatially ag-
gregated in southern Shaanxi, while the coldspots were mainly distributed in the Guanzhong 
Basin and Sand-windy Plateau; and 3) the identified hotspots had the highest capacity of 
providing SC, with 29.6% of the total area providing 59.7% of the total service. In contrast, the 
coldspots occupied 46.3% of the total area, but only provided 17.2% of the total SC. In addi-
tion to conserving single ES, the Getis-Ord Gi* statistics method can also help identify 
multi-functional priority areas for conserving multiple ES and biodiversity. 

Keywords: ecosystem services mapping; soil conservation; spatial clustering; Getis-Ord Gi* statistics; Shaanxi 
Province 

1  Introduction 

Ecosystem services (ES) are regarded as an effective communication tool to bridge the 
knowledge between science, policy making, and practice. Work in this field has gained in-
creasing attention in recent years (Trabucchi et al., 2014; Guerra et al., 2016). Generally, ES 
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are grouped into supporting, provisioning, regulating, and cultural services (MA, 2005; 
Adhikari and Hartemink, 2016). Soil conservation service (SC) is a critical regulating ser-
vice supplied by terrestrial ecosystems to prevent soil erosion. It is well known that soil loss 
is one of the most severe and widespread environmental problems in China, especially in the 
Loess Plateau (Fu et al., 2011). The soil deterioration caused by soil loss brings a series of 
negative impacts on the fragile ecosystem, threatening the sustainability of the food security 
and social economy in the region (Fu et al., 2005; Fu et al., 2011; Guerra et al., 2016), which 
have drawn much attention from the stakeholders who suffered the dilemma (Fu et al., 2015). 
The Chinese central and local governments launched a series of soil and water conservation 
measures to alleviate this situation, and the Grain-for-Green Program (GfG) is one of the 
most ambitious and widespread actions to restore vegetation. These kinds of giant projects 
usually need an enormous investment of manpower and material resources, which may add a 
great burden to our national economy and consequently restrict the sustainability of the pro-
jects. Thus, spatial-explicitly assessing soil conservation is of great importance to convey 
effective messages to the stakeholders and facilitate targeted decision making. ES mapping, 
especially the identification of ES hotspots is a primary node bringing ES into the process of 
ecological conservation assessment.  

ES hotspots are defined as regions with high service-diversity, high biophysical or mone-
tary value of services, or high capability of supplying services; the opposite features are de-
fined as coldspots (Li, 2014; Schröterand Remme, 2016). Here, we focus on “hotspot” de-
fined as areas with a high biophysical value of a single service. Identifying hotspots and 
coldspots can offer a reference for scientifically defining conservation boundary and setting 
conservation priority area when allocating limited resources in the process of ecosystem 
management (Reyers et al., 2009; Zhang and Fu, 2014). A range of relevant research has 
been performed by using several priority-setting approaches (Trabucchi et al., 2013; Zhang 
et al., 2014), which can be classified into two types. The first one is by defining a certain 
threshold to determine hotspots and coldspots. For example, Wu et al. (2013) defined the top 
10% of the grid cell value as the hotspots of that ES. Similarly, Gimona and van der Horst 
(2007) counted the grid cells values above or below the median value of all grid cells as 
hotspots. These maneuverable practices can map priority areas and provide references for 
systematic ecological conservation planning. However, threshold or quantiles-based method 
usually ignore the landscape connectivity between or within the identified hotspots, which 
can lead to undesirable and severe landscape fragmentation. Implementing conservation 
projects in fragmentized patches can be thorny and costly (Mitchell et al., 2015). Thus, 
spatial clustering methods are needed to prevent identifying fragmentary hotspots. Fortu-
nately, another type of method is based on spatial aggregation/clustering analysis, among 
which, Kernel density estimation (KDE), a frequently used hotspot analysis method can 
reveal where point or line features are concentrated (Alessa et al., 2008). However, the KDE 
method only takes the location information into the identification but does not put the 
features’ attribute values into the results. Therefore, KDE is only useful for the aggregation 
of scattered, location-based data (such as the survey data of multiple ES), but is unfit for 
spatially uniform grid data. In addition, geostatistical analyses, such as Moran’s I, Getis-Ord 
Gi* statistics can also be used to identify hotspots, but in practice, the Getis-Ord Gi* 
statistics (or Gi* statistics, for short) was proved to be superior to the alternatives 
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(Braithwaite and Li, 2007). The greatest advantage of the Gi* statistics is that it takes the 
value of all neighboring features into consideration and reports hotspots and coldspots with 
different levels of statistical significance. The output hotspots can present better continuous 
surface, which is an expression of landscape connectivity. Hotspot analysis using the Gi* 
statistics has been widely applied in crime analysis, epidemiology, traffic accidents, 
economic geography, demographics and similar parameters (Alessa et al., 2008; ESRI, 2013; 
Barro et al., 2015); in recent years, it is commonly seen in biodiversity study (O'Farrell et al., 
2011; Di Minin et al., 2013). However, seldom has it been used in the identification of ES 
conservation priority areas. Although a few “hotspots mapping” can be found in relevant 
studies by using kernel density estimation or defining a certain threshold (Guerra et al., 2016; 
Li, 2014), these methods are not sufficient from the perspective of statistical significance 
(Mitchell, 2005), thus are less effective when compared to the Gi* statistics. 

In this study, we use Shaanxi Province as a case study. Based on the RUSLE model and 
the newly introduced hotspot analysis method (i.e., Gi* statistics), the objectives of this 
study are to 1) map and assess the spatio-temporal variations of SC in Shaanxi from 2000 to 
2013; 2) identify the hotspots and coldspots of SC and evaluate their capacity of supplying 
SC; and 3) discuss the driving factors that led to changes in SC. The results and method may 
contribute to conservation planning as well as support the policy making associated with 
sustainable land-use planning and ecosystem management.  

2  Materials and methodology 

2.1  Study area  

Shaanxi Province (10529–11015E, 3142–3935N) is located in northwest China, with 
an area of 205.8 thousand km2 and population of about 37.75 million by the end of 2013 
(Figure 1). Characterized by a mainland monsoon climate, the annual precipitation decreases 
from south to north. The annual precipitation in the Hanjiang River Basin is about 1000 mm, 
reduces to 800 mm in the Qinling Mountain zone, and is only 400 mm in the Sand-windy 
Plateau zone. The major soil types in Shaanxi include loessial soil, (yellow) brown soil, 
cinnamon soil and aeolian sandy soil (Feng, 2013). Terrains of Shaanxi are high in the north 
and south, and low the middle part of the Guanzhong Basin. The Yellow River Basin and the 
Yangtze River Basin account for 62.6% and 35.4% of Shaanxi’s area, respectively, and 
approximately 40% of Shaanxi is on the Loess Plateau, where the inappropriate land use and 
degraded vegetation have made it the most severe soil loss region in China (Jiang et al., 2015; 
Su et al., 2012).Under the background of climate change and rapid economic development in 
recent decades, the ecosystem degradation in Shaanxi has prompted great concern about the 
conservation of biodiversity and ES (Jia et al., 2014). During the past decades, many ame-
liorative actions, like the Three-North Shelter Forest Program (TNSFP) and the 
Grain-for-Green Program (GfG), have made great contributions to vegetation restoration and 
soil loss control in China. However, this kind of program at the physical regionalization 
scale or watershed scale may invite poor accountability for regional management (Zhang 
and Song, 2003; Wang et al., 2010b). Thus we conducted the research at an administrative 
regional scale, hoping to facilitate the policy making of ecosystem restoration. 
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2.2  Datasets and methodology 

2.2.1  Data sources 

The monthly meteorological data (pre-
cipitation and temperature) of 45 stations 
(Figure 1) are retrieved from the website 
of National Meteorological Information 
Center. Topographical parameters (i.e. 
slope, aspect, and elevation) are derived 
from STRM (Shuttle Radar Topography 
Mission) DEM data. The soil properties 
data come from Harmonized World Soil 
Database (version 1.2). The NDVI (Nor-
malized Difference Vegetation Index) data 
are acquired from NASA’s Earth Obs-
erving System. The Land Use and Land 
Cover (LULC) maps are derived and 
interpreted from the Landsat Thematic 
Mapper (TM) data, and we control the 
accuracy at about 92% by field recon-
naissance and Google Earth verification. 

We resampled all the parameters (listed in Table 1) into 250 m resolution before inputting 
them into the model simulation. 
 

Table 1  The datasets sources 

Data Type Resolution Time period Sources 

Meteorological data Point — 2000–2013 http://cdc.cma.gov.cn/ 

Soil properties Raster 1 km 2000 http://webarchive.iiasa.ac.at/ 

DEM Raster 90 m 2004 http://srtm.csi.cgiar.org/ 

LULC Polygon 30 m 2000, 2013 http://www.landcover.org/data/ 

MODIS NDVI Raster 250 m 2000–2013 http://ladsweb.nascom.nasa.gov/data/ 

 

2.2.2  Method for mapping SC 

The staple soil conservation (SC) assessment methods are mainly based on empirical soil 
erosion models, i.e., the RUSLE (Revised Universal Soil Loss Equation) model (Renard et 
al., 1997; Wischmeier and Smith, 1965; Rao et al., 2014), by which soil conservation can be 
quantified by the difference between potential soil loss and actual soil loss (Li, 2014; Guerra 
et al., 2014; Baró et al., 2015). 

 SC = Ap – Ar = R  K  L  S – R  K  L  S  C  P  (1) 

where SC is the annual amount of soil conservation (t·hm2·yr1); Ap presents the annual 
potential soil erosion without ES supplied (here, vegetation cover), and Ar is annual actual 
soil loss; other parameters are estimated as follows: 

1) R: rainfall erosivity factor (MJ·mm·hm2·h1·yr1) is calculated by using the empirical 

 
 

Figure 1  Location of meteorological stations and geo-
graphical division in Shaanxi Province, China 
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formula developed by Wischmeier and Smith (1978); the Pi and P are the monthly and an-
nual precipitation (mm) respectively. 
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2) K: soil erodibility factor (t·ha·h·ha1·MJ1·mm1) describes the vulnerability of the soil 
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SAN, SIL, CLA and C are the percentage (%) of sand, silt, clay and organic matter in soil, 
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3) L: the slope length factor is calculated using formula defined by McCool et al. (1987); 
S stands for slope factor, and m is a dimensionless constant depending on the percent slope (θ). 
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4) C: crop and management factor; C is estimated by using Cai et al. (2000) model. The f 
parameter refers to vegetation coverage, which is computed by using NDVI data (Fu et al., 
2011). 
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5) P refers to conservation practice factor, which is estimated according to the method 
applied in Loess Plateau (Lufafa et al., 2003; Fu et al., 2011). α is the percentile slope gra-
dient and is calculated from DEM.  

 P = 0.2 +0.03α (7) 

2.2.3  Gi* statistics-based hotspots and coldspots analysis 

In this paper, the Gi* statistics was used to identify hotspots and coldspots of soil conserva-
tion service (SC). As a tool integrated in ArcGIS 10.2, this approach takes each raster pixel 
within the context of neighboring features into the calculation and outputs a new feature 
class with z-score, p-value and confidence level. Features with high z-score and small 
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p-value indicate statistically significant hotspots, and features with low negative z-score and 
small p-value demonstrate statistically significant coldspots. The magnitude of the absolute 
value of the z-score explains the intensity of the clustering (Getis and Ord, 1992; Mitchell, 
2005). This approach can help identify hotspots and coldspots with different significant lev-
els, so based on which stakeholders can set corresponding priorities according to the actual 
requirements. The principle of this method is shown as follows: 

 1 1

2
n

2

1 1

=

1

n n

ij j ij
j j

i
n

ij ij
j j

w x X w

G

n w w

S
n

 

 



  
       



 

 

 (8) 

where the *
iG  is a z-score of patch i. xj is the attribute value for patch j; wij is the spatial 

weight between patch i and patch j, if the distance from a neighbor j to the feature i is within 
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Identifying and mapping the hotspots and coldspots can visualize priority areas spa-
tial-explicitly, which is helpful for targeted policy making. Crossman and Bryan (2009) have 
demonstrated that the conservation benefits could increase by 25% by using hotspots analy-
sis over a random approach. 

2.2.4  Other methods 

Linear trend analysis has been widely used in analyzing the vegetarian cover change and 
climate change for a continuous period (Lu et al., 2015; Deng et al., 2013). In this paper, we 
adopted linear regression to analyze the changing trend of SC from 2000 to 2013. Also, 
Kriging spatial interpolation was conducted using the geostatistical analysis module in  
ArcGIS 10.2 (ESRI, 2013), through which we can adjust the parameters and construct the 
ideal interpolation model. 

3  Results 

3.1  Spatio-temporal variations of SC 

The spatial patterns of SC show that the amount of SC increased approximately from north 
to south (Figure 2a). Precisely, divided by Qinling Mountains, the SC in the Guanzhong Ba-
sin and Sand-windy Plateau zone was low, while the Qinling-Daba Mountains zone showed 
high SC.  

The total SC in Shaanxi experienced a significant increase at a rate of 0.47 t·hm2·a1 
(P<0.01) from 2000 to 2013. It increased from 5.43×108 t in 2000 to 14.07×108 t in 2013, 
which generally synchronized with the rainfall. Figures 2b and 2c show the change rate and 
the significance of changing trend, respectively. The significant increase of SC (P<0.05) was 
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Figure 2  Spatial patterns of SC (a), change rate of SC (b) and the significant (P<0.05) change areas (c) from 
2000 to 2013. The change rate at cell level was calculated by using the least square method (LSM). 
 

intensively aggregated in the west of Qinling-Daba Mountains and was sporadically distrib-
uted in the north of the Loess Plateau zone. Besides, areas with high SC presented a signifi-
cant increase while areas with low SC changed slightly. 

Since the Grain-for-Green Program (GfG) was launched in 1999, the vegetation restora-
tion has improved a lot. Accordingly, the soil loss control has made great progress in the 
Loess Plateau, especially in the middle of the Loess Plateau zone. SC’s spatial distribution 
pattern may be closely related to local topography and human activities. Northern Shaanxi is 
extensively covered by gully and desert, where the structure of loess is relatively loose and 
the loose loess tends to be eroded by rainfall and the wind. Also, in the arid and semiarid 
regions, the heterogeneous seasonal precipitation and recurring storms often lead to fragile 
land cover and low capacity of conserving water and soil. While the Guanzhong Basin is 
characterized by a low slope and dense population, extensive and intensive human activities 
have severely altered the land cover; thereby produced a profound influence on the capabil-
ity of water and soil conversation. However, the Qinling-Daba Mountains zone with slope 
gradient above 25% in southern Shaanxi provided the most SC. This hilly region accounts 
for nearly 42.76% of Shaanxi Province, and the population is concentrated in the Hanjiang 
River Basin. Thus human activities have less impact on the land cover in this region (Zhang 
et al., 2010). Furthermore, abundant rainfall there can ensure the exuberant vegetation, 
thereby facilitates the soil conservation. 

3.2  Hotspots and coldspots of SC 

3.2.1  Identifying and mapping hotspots and coldspots 

The statistically significant hotspots and coldspots with different confidence levels are 
shown in Figure 3. Generally, P<0.05 (i.e., 95% confidence level) is defined as statistically 
significant (Bryan et al., 2010). Thus, we focused on hotspots and coldspots with above 95% 
confidence in this study.  

The statistically significant hotspots (hotspots**, for short) of SC accounting for 29.6% of 
the area of Shaanxi provided 59.7% of the total SC, while the coldspots with above 95% con-
fidence (coldspots**, for short) accounting for 46.3% of the area provided only 17.2% of the 
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total SC (Table 2). The results indicated that 
the hotspots have the highest capacity of 
conserving soil. Areas with hotspots**could 

supply mean amount of 508.08 t·km2·a1 soil 
conservation service, which is six times as 
many as the coldspots**. This high effective-
ness of hotspots means implementing conser-
vation project in these areas will be more 
cost-efficient. This knowledge can facilitate 
workable policy making and targeted action 
taking (Guerra et al., 2016). 

Moreover, the spatial patterns of hotspots 
and coldspots can guide targeted priority pol-
icy making. Hotspots**of SC were mainly 
scattered in southern Shaanxi (i.e., the QDM 
zone), while coldspots** were mainly distrib-
uted in the Guanzhong Basin and Sand-windy 
Plateau zone (Figure 3). The results indicated 
that the supply of soil conservation service was 
mainly centered in the south of Shaanxi and 
these hotspots should be well protected in case 
of being disrupted. However, in the north of 

Shaanxi, there were few SC hotspots. Encouragingly, the LOP zone, where characterized by 
the most serious soil loss in the last century, has not seen coldspots in recent 14 years, which 
also illustrated the positive effects of vegetation restoration projects. 

 

Table 2  Statistics on the hotspots and coldspots of soil conservation service in Shaanxi Province, China  

 Annual SC per unit area (thm2a1) Area percentage (%) Annual SC percentage (%) 

Coldspots** 80.85 41.40 13.61  

Coldspots* 175.99 4.95 3.55  

Coldspots 190.68 2.41 1.87  

Not Significant 239.34 20.63 20.08  

Hotspots 296.79 1.02  1.24  

Hotspots* 309.95 1.86  2.34  

Hotspots** 508.08 27.73 57.31  

Note: The double star (**) and a single star (*) superscript indicate hotspots or coldspots are significant at 99% and 
95% level, respectively. 

 

3.2.2  LULC types in hotspots and coldspots 

Vegetation cover plays a vital role in ameliorating the degradation of ES (Reyers et al., 
2009). It can enhance the trapping of rainwater and reduce the kinetic energy of rainfall, thus 
mitigate the erosion. By regulating the spatial configuration of LULC, we can enhance the 
conservation of water and soil (Fu et al., 2015; Lorencova et al., 2013). For the hotspots 
identified, 78.9% of which were covered by woodland and grassland, while there were only 

 
 

Figure 3  Hotspots and coldspots with different 
confidence levels (The double star (**) and single 
star (*) superscript indicate hotspots or coldspots are 
significant at 99% and 95% level respectively) 
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43.6% of the coldspots covered by vegetation (Figure 4). Also, a total proportion of 45.8% 
of the coldspots were found in farmland. Thus, the hotspots usually have high vegetation 
cover.  

 
Figure 4  LULC types in hotspots and coldspots. The pie charts indicate the percentage of each LULC from the 
total area of hotspots or coldspots. 

 

Effective land-use policies can optimize spatial configuration of LULC, thereby influence 
the provisioning of ES (Fu et al., 2015). The SC capacity under different vegetation states 
reflects the great importance of vegetation for ecosystems, so the hotspots with a high frac-
tion of vegetation cover should be treated as priority reserve where laws and regulations are 
needed to be reinforced but not too many funds should be invested. As for alleviating cold-
spots, both policy and funds are required. Regarding the Loess Plateau region, the vegetation 
restoration and construction like GfG and TNSPF projects should give priority to local or 
native species to ensure survival rate and long-term ecological effects. For the Guanzhong 
Basin, where covered by extensive farmland and residential land, more efforts should be 
placed on irrigation and water conservancy projects, so as to reduce water and soil loss. 

4  Discussion 

4.1  Driving factors of the SC change 

Climate and land use change have been demonstrated to the two main factors that influence 
the spatio-temporal variation of soil conservation (Su et al. 2012, Lorencova et al. 2013). In 
Shaanxi, characterized by fragile underlying surface, intensive human-environment interac-
tions play an increasingly important role in shaping the hydrological processes and sediment 
export. 

4.1.1  LULC change 

LULC transition can affect major eco-hydrological processes, including energy exchange, 
water cycling, soil loss and biogeochemical cycles (Felipe Lucia et al., 2014), which directly 
and indirectly influence the provision of ES (MA, 2005; Fu et al., 2015). Due to the joint 
efforts of GfG and TNSPF, the land cover in northern Shaanxi has changed noticeably (Su 
and Fu, 2013). Woodland and grassland increased by 1625.33 km2 and 929.64 km2 from 
2000 to 2013 respectively, and the farmland was reduced by 3780.90 km2. Meanwhile, the 
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mean annual SC in each LULC type showed an increasing trend from 2000 to 2013 (Figure 
5a). Figure 5b shows the areas and spatial distribution of that other land types transferred to 
woodland and grassland. The transition was mainly scattered on the middle Loess Plateau 
zone, which was in accordance with the significant increase of SC in this area. Moreover, we 
tested the SC supplying capacities of each LULC by applying the Zonal Statistics (ESRI, 
2013). The results showed that woodland held the highest capacity of supplying soil conser-
vation service, followed by grassland. In contrast, the capacity of residential land and desert 
were very low. Therefore, we can conclude that LULC is a key driving force of SC change, 
which was consistent with Fu et al.’s study on the Loess Plateau (Fu et al., 2011). 

 

 
 

Figure 5  Comparison of LULC change between 2000 and 2013: (a) the area (AR) of LULC change and the mean 
SC provided by each LULC type; (b) the distribution of other types of LULC transferred to woodland and grassland 

 

4.1.2  Climate change 

Though the vegetation restoration projects were widely carried out in China, except the 
pronounced LULC change in northern Shaanxi, no evident change appeared in the south 
(Figure 5b). However, the SC in southern Shaanxi did present a significant increasing trend 
(Figure 2). Therefore, other driving forces, for example, climate change may contribute to 
the variation of SC. Taking the Yanhe River basin as an example, it was the earliest and 
fastest region to implement the Grain-for-Green Program (GfG), and the LULC has changed 
dramatically. Meanwhile, the annual precipitation showed an increasing trend in recent 14 
years, which also promoted the growth of vegetation in this arid area (Yapp et al., 2010; Fu 
et al., 2011). Thus, the strengthened soil conservation service in this area was the synthetical 
effects of LULC and climate change. Though the amount of precipitation has been illus-
trated to be the main driving factor of soil erosion (Fu et al., 2011), the precipitation inten-
sity, precipitation frequency and precipitation-concentration-degree and precipita-
tion-concentration-period (Li et al., 2016) may also influence the rainfall erosivity (Wei et al., 
2009; López-Tarazón et al., 2010). Thus, the detailed influence mechanism awaits to be fur-
ther studied.  

Particularly, we compared the spatial patterns of SC, precipitation and temperature, and 
found that the spatial configuration of SC (Figure 2) was similar to precipitation’s (Figure 6): 
both of them showed high values as well as increasing trends in QDM and LOP. Therefore, 
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apart from the vegetation restoration, climate change might also contribute to the increase of 
SC in the LOP. Further, the temperature in LOP seemingly tended to decrease in recent 14 
years, which may help reduce the vegetational evaporation loss to avoid drought. In this 
semi-arid and arid area, water is a key factor that constrains the growth of vegetation, and 
bare or sparsely vegetated ground is prone to be eroded by rainfall. As for southern Shaanxi, 
especially the west of QDM, both precipitation and temperature showed an evident increas-
ing trend, which was in accordance with the variation of SC. This region is well covered by 
forest, and little land-cover transfer occurred in the process of vegetation restoration projects. 
So the significant increase of precipitation may help enhance the SC in the south of Shaanxi. 

In conclusion, LULC change under the policy of Grain-for-Green in northern Shaanxi was 
an incontrovertible driving force of SC increase. Meanwhile, the increasing precipitation in 
recent years also contributed to this improvement.  

 

 
Figure 6  Spatial patterns of mean annual precipitation (PPT) (a), temperature (Tem) (c) and their change rates 
(b and d) from 2000 to 2013. The change rate at grid cell level was calculated by using the least square method 
(LSM). 

 

4.2  Why using the Getis-Ord Gi* statistics for hotspots analysis?  

Though several spatial clustering analyses (such as KDE, Local Moran’s I) can help identify 
hotspots, the alternatives are all insufficient compared with the Gi* statistics. Kernel density 
estimation (KDE) is efficient for the scattered, location-based data (such as random investi-
gation data of multiple ES as seen in Figure 7a), but for spatially uniform grid data, it loses 
efficiency (see Figure 7b). Besides, KDE can only show the location of the clusters, but 
cannot tell whether the clusters are significant or not. Local Moran’s I is more suitable for 
finding statistically significant clusters of high (or low) values and the outlier (ESRI, 2013), 
such as figuring out the sharp boundaries between rich and poor in a certain region, or the 
location of unexpectedly high rates of disease across the study area (ESRI, 2013). This sta-
tistic method underlines the level of events of each individual feature of a neighborhood, 
instead of the combined level of events for the neighborhood as a whole (Braithwaite and Li, 
2007), so it is less sensitive to spatial weights among features. Furthermore, unlike epidemic 
or crime in social science (Eck et al., 2005; Braithwaite and Li, 2007; Ahmad et al., 2015), 
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research objects in natural science (for example, SC in this text) are generally homogeneous 
and have continuous surface and good connectivity. Thus, we do not focus on outlier but on 
good landscape connectivity for cost-efficient management. 

The Gi* statistics is one of the spatial clustering methods, which works by calculating the 
local sum for a feature and its neighbors and then comparing the preliminary result propor-
tionally to the sum of all features. When the calculated local sum is diametrically different 
from the expected one, and that difference beyond a random chance, then a statistically sig-
nificant z-score (i.e., Gi) outputs (ESRI, 2013). Therefore, the Gi* statistics is a more robust 
method for identifying hotspots and coldspots. 

 

 
 

Figure 7  Comparison of three hotspot analysis methods: KDE (1), Local Moran’s I (2), Getis-Ord Gi* statistics (3) 
Note: When input features are spatially scattered (see Figure 7a), the KDE can only identify spatial cluster, but it mixes 
the cluster of high values (i.e., hotspots) and the cluster of low values (coldspots); that is, the KDE can neither tell what 
the cluster is nor whether it is significant. Fortunately, the Local Moran’s I and Getis-Ord Gi* statistics can both make it. 
The difference is that the Local Moran’s I is more efficient at identifying the outliers (see Figure 7a-(2) above), while the 
Gi* statistics is even better at identifying statistically significant hotspots and coldspots with different confidence levels 
(see Figure 7a-(3)). When input features are spatially uniform grid data (see Figure 7b), the KDE becomes inefficient, 
while the Local Moran’s I and Gi* statistics work well in this case, and the Gi* statistics especially holds its unique supe-
riority. 
 

4.3  Implications of the hotspots and coldspots mapping for conserving ES 

While ES mapping can provide guidance for conservation policy making, we propose that 
hotspots and coldspots analysis should be integrated into the priority area setting for sys-
tematic conservation. Prioritization sites with ES hotspots are considered to be comprehen-
sive, compact and cost-effective (Schröter and Remme, 2016). In reality, the conservation 
budgets are usually not sufficient to conserve all sites. To achieve cost-effectiveness, the 
hotspots must be compact and with low edge-to-area ratio. Hotspots identified based on 
quantiles and threshold method are quite fragmented and isolated (Schröter and Remme, 
2016), which are in poor quality for reserve networks. But the Gi* statistics-based hotspot 
analysis method, one of the spatial-clustering quantitative method, is especially efficient for 
assessing and identifying ES hotspots and coldspots with good spatial connectivity. Thereby, 
this method is more beneficial for practical and cost-effective ES conservation management 
(Guerra et al., 2014; Moilanen et al., 2014). 
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ES hotspots maps can be used as visual and vivid tools to initiate communications with 
stakeholders about management planning (Maes et al., 2013). Clarifying the hotspots and 
coldspots sites helps set priorities for maintaining essential ES when financial resources are 
limited (de Groot et al., 2010; Newburn et al., 2005; Crossman and Bryan, 2009). ES hot-
spots should get the priorities of being reserved and avoid being damaged; as for ES cold-
spots, targeted measures should be taken to ameliorate the severe status quo by analyzing 
and sorting out local drivers of ES conflicts and degeneration (Jiang et al., 2013). In this text, 
the SC hotspots mainly occurred in areas with high vegetation cover, while SC coldspots 
mostly appeared in areas covered by farmland (Figure 4). With this knowledge, we suggest 
that the Grain for Green Program should continue to be implemented in the coldspots areas. 

For different purposes of ES conservation, there are different definitions for ES hotspot. 
As for Shaanxi Provence, soil loss is one of the most serious environmental problems in this 
area, so we focus on a single service and identify the SC hotspots and coldspots to set priori-
ties for conservation. But our ecosystems are often complex, and one landscape usually 
holds several functions and services. Thus, multiple ES should be considered at a time to 
conserve multi-functional hotspots. The Gi* statistics-based hotspots analysis is also effi-
cient for this case (Schröter and Remme, 2016). 

5  Conclusions 

To achieve efficient ecosystem conservation, we need to find out the optimal scheme for 
resource allocation. ES hotspots and coldspots mapping provides a pathway for conservation 
priority setting. By integrating several spatial datasets and models, this case study examined 
the spatio-temporal variation of the soil conservation service for Shaanxi Province, and fur-
ther mapped the ES hotspots and coldspots based on Getis-Ord Gi* statistics method.  

The results showed that the annual SC in Shaanxi experienced an evident increasing ten-
dency from 2000 to 2013 as a whole, but the changes in SC and its drivers were spatially 
heterogeneous. We found that the increase of SC in northern Shaanxi was mainly due to 
LULC change, while in the south, the increase was mainly affected by precipitation. 

Furthermore, our study pointed out that Gi* statistics has the potential to guide conserva-
tion priority setting, since this method can help identify ES hotspots and coldspots with high 
landscape connectivity and compactness. Hotspots identified using the method have a much 
higher capacity of supplying ES compared with the non-hotspots. This means protecting less 
area (i.e., hotspots) can benefit more service. Thus, this study offered a cost-efficient and 
spatially-explicit framework for ES conservation priority setting. Stakeholders can also in-
tegrate this method into their framework for identifying and conserving multi-functional 
hotspots of ES or biodiversity to support targeted ecosystem policy making. 
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